Муниципальное автономное общеобразовательное учреждениегимназия № 94
ПРИНЯТО:
Утверждаю:
На заседании педагогического совета
МАОУ-гимназия № 94
Директор МАОУ – гимназия № 94
_____________С.А. Ярославцев
Протокол № 10
от «29» августа 2025 г.
Приказ № 64/2-О
от 29.08.2025 г.
РАБОЧАЯ ПРОГРАММА КУРСА
«Методы решения сюжетных задач
арифметическим способом» для 8 класса
Срок реализации программы 1 года
г. Екатеринбург, 2025
ПОЯСНИТЕЛЬНАЯ ЗАПИСКА
Количество учебных часов, на которые рассчитана программа:
8
Всего
класс
Количество учебных недель
34
34
Количество часов в неделю
1
ч/нед
Количество часов в год
34
34
Уровень подготовки учащихся - углубленный.
Место предмета в учебном плане – часть,
образовательных отношений.
формируемая
участниками
Структура задачи. Виды краткой записи.
Общие сведения. Понятие задачи (различные трактовки). Структура задач.
Рассматриваются такие виды краткой записи, как
геометрическая, схематическая, круги Эйлера.
Основные типы простейших задач на дроби и проценты.
Актуализация знаний обучающихся о основных типах задачна дроби и на
проценты, рассмотрение записи одной и той же ситуации в различных формах
представления информации- числовой: процентом, обыкновенной дробью, десятичной
дробью, геометрически - с помощью линейной и круговой диаграммой.
Метод обратимости.
Суть метода и компоненты. Признак выбора метода. На подготовительном этапе
необходимо акцентировать внимание на геометрический способ оформления краткой
записи.
Метод чашек – один из способов схематической краткой записи.
Рассмотрение примера визуализации сюжета задачи, как верного помощника в
поиске решения задачи. В данном разделе рассматриваются применение метода
обратимости к решению задач на «доливание, смешивания…» с использованием в
качестве приема метода уравнений. В данном разделе ярко прослеживаются
межпредметные связи с химией, что позволяет учителю акцентировать внимание на
универсальность формируемых приёмов работы с задачей, т.е. на их метапредметность.
Метод пропорционального деления.
Понятие пропорции, свойства пропорции. Суть метода и его компоненты.
Метод исключения неизвестных
Суть метода и компоненты. Приём сравнения двух условий вычитанием, приём
уравнивания неизвестных, приём уравнивания данных, замена одного неизвестного
другим.
Метод частей.
Суть метода и компоненты.
ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ КУРСА.
ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ
Личностные результаты освоения программы учебного курса «Алгебра»
характеризуются:
1) патриотическое воспитание:
проявлением интереса к прошлому и настоящему российской математики,
ценностным отношением к достижениям российских математиков и российской
математической школы, к использованию этих достижений в других науках и прикладных
сферах;
2) гражданское и духовно-нравственное воспитание:
готовностью к выполнению обязанностей гражданина и реализации его прав,
представлением о математических основах функционирования различных структур,
явлений, процедур гражданского общества (например, выборы, опросы), готовностью к
обсуждению этических проблем, связанных с практическим применением достижений
науки, осознанием важности морально-этических принципов в деятельности учёного;
3) трудовое воспитание:
установкой на активное участие в решении практических задач математической
направленности, осознанием важности математического образования на протяжении всей
жизни для успешной профессиональной деятельности и развитием необходимых умений,
осознанным выбором и построением индивидуальной траектории образования и
жизненных планов с учётом личных интересов и общественных потребностей;
4) эстетическое воспитание:
способностью к эмоциональному и эстетическому восприятию математических
объектов, задач, решений, рассуждений, умению видеть математические закономерности в
искусстве;
5) ценности научного познания:
ориентацией в деятельности на современную систему научных представлений об
основных закономерностях развития человека, природы и общества, пониманием
математической науки как сферы человеческой деятельности, этапов её развития и
значимости для развития цивилизации, овладением языком математики и математической
культурой как средством познания мира, овладением простейшими навыками
исследовательской деятельности;
6) физическое воспитание, формирование культуры здоровья и
эмоционального благополучия:
готовностью применять математические знания в интересах своего здоровья,
ведения здорового образа жизни (здоровое питание, сбалансированный режим занятий и
отдыха, регулярная физическая активность), сформированностью навыка рефлексии,
признанием своего права на ошибку и такого же права другого человека;
7) экологическое воспитание:
ориентацией на применение математических знаний для решения задач в области
сохранности окружающей среды, планирования поступков и оценки их возможных
последствий для окружающей среды, осознанием глобального характера экологических
проблем и путей их решения;
8) адаптация к изменяющимся условиям социальной и природной среды:
готовностью к действиям в условиях неопределённости, повышению уровня своей
компетентности через практическую деятельность, в том числе умение учиться у других
людей, приобретать в совместной деятельности новые знания, навыки и компетенции из
опыта других;
необходимостью в формировании новых знаний, в том числе формулировать идеи,
понятия, гипотезы об объектах и явлениях, в том числе ранее неизвестных, осознавать
дефициты собственных знаний и компетентностей, планировать своё развитие;
способностью осознавать стрессовую ситуацию, воспринимать стрессовую
ситуацию как вызов, требующий контрмер, корректировать принимаемые решения и
действия, формулировать и оценивать риски и последствия, формировать опыт.
МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ
Познавательные универсальные учебные действия
Базовые логические действия:
выявлять и характеризовать существенные признаки математических
объектов, понятий, отношений между понятиями, формулировать определения понятий,
устанавливать существенный признак классификации, основания для обобщения и
сравнения, критерии проводимого анализа;
воспринимать,
формулировать
и
преобразовывать
суждения:
утвердительные и отрицательные, единичные, частные и общие, условные;
выявлять математические закономерности, взаимосвязи и противоречия в
фактах, данных, наблюдениях и утверждениях, предлагать критерии для выявления
закономерностей и противоречий;
делать выводы с использованием законов логики, дедуктивных и
индуктивных умозаключений, умозаключений по аналогии;
разбирать доказательства математических утверждений (прямые и от
противного), проводить самостоятельно несложные доказательства математических
фактов, выстраивать аргументацию, приводить примеры и контрпримеры, обосновывать
собственные рассуждения;
выбирать способ решения учебной задачи (сравнивать несколько вариантов
решения, выбирать наиболее подходящий с учётом самостоятельно выделенных
критериев).
Базовые исследовательские действия:
использовать вопросы как исследовательский инструмент познания,
формулировать вопросы, фиксирующие противоречие, проблему, самостоятельно
устанавливать искомое и данное, формировать гипотезу, аргументировать свою позицию,
мнение;
проводить по самостоятельно составленному плану несложный
эксперимент, небольшое исследование по установлению особенностей математического
объекта, зависимостей объектов между собой;
самостоятельно формулировать обобщения и выводы по результатам
проведённого наблюдения, исследования, оценивать достоверность полученных
результатов, выводов и обобщений;
прогнозировать возможное развитие процесса, а также выдвигать
предположения о его развитии в новых условиях.
Работа с информацией:
выявлять недостаточность и избыточность информации, данных,
необходимых для решения задачи;
выбирать,
анализировать,
систематизировать
и
интерпретировать
информацию различных видов и форм представления;
выбирать форму представления информации и иллюстрировать решаемые
задачи схемами, диаграммами, иной графикой и их комбинациями;
оценивать надёжность информации по критериям, предложенным учителем
или сформулированным самостоятельно.
Коммуникативные универсальные учебные действия:
воспринимать и формулировать суждения в соответствии с условиями и
целями общения, ясно, точно, грамотно выражать свою точку зрения в устных и
письменных текстах, давать пояснения по ходу решения задачи, комментировать
полученный результат;
в ходе обсуждения задавать вопросы по существу обсуждаемой темы,
проблемы, решаемой задачи, высказывать идеи, нацеленные на поиск решения,
сопоставлять свои суждения с суждениями других участников диалога, обнаруживать
различие и сходство позиций, в корректной форме формулировать разногласия, свои
возражения;
представлять результаты решения задачи, эксперимента, исследования,
проекта, самостоятельно выбирать формат выступления с учётом задач презентации и
особенностей аудитории;
понимать и использовать преимущества командной и индивидуальной
работы при решении учебных математических задач;
принимать цель совместной деятельности, планировать организацию
совместной работы, распределять виды работ, договариваться, обсуждать процесс и
результат работы, обобщать мнения нескольких людей;
участвовать в групповых формах работы (обсуждения, обмен мнениями,
мозговые штурмы и другие), выполнять свою часть работы и координировать свои
действия с другими членами команды, оценивать качество своего вклада в общий продукт
по критериям, сформулированным участниками взаимодействия.
Регулятивные универсальные учебные действия
Самоорганизация:
самостоятельно составлять план, алгоритм решения задачи (или его часть),
выбирать способ решения с учётом имеющихся ресурсов и собственных возможностей,
аргументировать и корректировать варианты решений с учётом новой информации.
Самоконтроль, эмоциональный интеллект:
владеть способами самопроверки, самоконтроля процесса и результата
решения математической задачи;
предвидеть трудности, которые могут возникнуть при решении задачи,
вносить коррективы в деятельность на основе новых обстоятельств, найденных ошибок,
выявленных трудностей;
оценивать соответствие результата деятельности поставленной цели и
условиям, объяснять причины достижения или недостижения цели, находить ошибку,
давать оценку приобретённому опыту.
Предметными результатами обучения являются:
1) умение работать с математическим текстом (анализировать, извлекать
необходимую информацию), точно и грамотно выражать свои мысли в устной и
письменной речи с применением математической терминологии и символики,
использовать различные языки математики, проводить классификации, логические
обоснования, доказательства математических утверждений; решения несложных
практических расчетных задач, в том числе с использованием при необходимости
справочных материалов, калькулятора;
2) умение интерпретировать результаты решения задач с учетом ограничений,
связанных с реальными свойствами рассматриваемых процессов и явлений; переводить
условия задачи на математический язык;
3) использовать методы работы с простейшими математическими моделями;
овладение системой функциональных понятий, функциональным языком и символикой;
умение использовать функционально-графические представления для описания и анализа
реальных зависимостей;
4) овладение геометрическим языком, умение использовать его для описания
предметов окружающего мира; развитие пространственных представлений и
изобразительных умений, приобретение навыков геометрических построений;
5) умение применять изученные понятия, результаты, методы для решения задач
практического характера и задач из смежных дисциплин с использованием при
необходимости справочных материалов, калькулятора, компьютера.
Ученик научится:
Выявлять структуру задачи, этапов работы над задачей;
Выявлять признаки выбора метода обратимости;
Выявлять признаки выбора метода пропорционального деления;
Выявлять признаки выбора метода исключения неизвестных;
Выявлять признаки выбора метода частей.
Ученик получит возможность иметь представление:
о сути метода обратимости, метода чашек, метода пропорционального
деления, метода исключения неизвестных, метода частей
Ученик получит возможность уметь:
распознавать тип задачи, прием, метод ее решения;
работать над задачей в соответствии с основными этапами,
использовать методы в практике решения задач;
работать с рекомендованной учебной и справочной литературой.
Ученик получит возможность владеть:
приемами учебной работы с задачами на различных этапах решения задач;
арифметическими методами решения сюжетных задач: методом обратимости,
методом пропорционального деления, методами исключения неизвестных,
методами подобия и т.п.
Тематическое планирование учебного материала курса по выбору
Раздел,
№ тема учебных занятий
1
Структура задачи. Виды краткой записи
2
Основные типы простейших задач на дроби и проценты
3
Метод обратимости
4
Метод чашек – один из способов схематической краткой
записи
5
Метод пропорционального деления
6
Метод исключения неизвестных
7
Метод частей
8
Повторение
9
Зачет
Кол-во часов
3
2
4
4
4
7
4
5
1